I B.TECH - EXAMINATIONS, DECEMBER - 2010
 ENGINEERING MECHANICS
 (COMMON TO ME, MCT, MMT, MEP, AE, AME)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Explain the following terms:
i) Mass,
ii) Continuum,
iii) Rigid body,
iv) Particle.
b) If three concurrent forces are acting on a body which are in equilibrium, then prove that the resultant of the two forces should be equal and opposite to the third force.
2.a) What is a wedge? Explain how a wedge is used to raise heavy loads.
b) A square threaded screw jack has a pitch of 1 cm and a mean diameter of 7.5 cm . The mean diameter of the bearing surface between the cap and the screw is 9 cm . The coefficient of friction between all surfaces is 0.10 . What force is required at the end of a lever 90 cm long to raise a load of 40 kN ?
3.a) Derive an expression for the ratio of belt tensions for a flat belt passing over a pulley when it is just on the point of slipping.
b) Find the maximum power transmitted and initial tension in a flat belt 8 mm thick and 100 mm wide. The belt transmits power between two pulleys running at 31.67 m / s. The angle of lap of smaller pulley is 165° and the coefficient of friction between the belt and pulley is 0.3 . Mass of the belt is 0.9 kg per m length, and the maximum permissible stress in the belt is $2 \mathrm{MN} / \mathrm{m}^{2}$.
4.a) Compare the location of the centroids of an arc of a circle and a sector of a circle subtending the same angle at the centre of the circle.
b) From a circular area of diameter 2d, a smaller circle of diameter d is removed. The centre of the smaller circle is at a distance of $\mathrm{d} / 2$ from that of the larger circle. Find the centroid of the remaining area.
5.a) What should be the length to radius ratio, i.e. l / r of a solid cylinder such that the moments of inertia about its longitudinal and transverse axes are equal.
b) Determine the moment of inertia of a hollow sphere of radii R_{1} and R_{2}, and determine the radius of gyration of a solid sphere.
[8+8]
6.a) Classify the following motions as translation, rotation, plane motion, or space motion:
(i) An aeroplane banked and taking a steady turn
(ii) A spinning top in un unsteady motion
(iii) A cone sliding on a flat surface
(iv) A compound pendulum oscillating about the fulcrum
(v) A spherical ball rolling down an incline.
(vi) A door being shut by turning about the hinges

Justify your answer with suitable explanation in each case.
b) A pulley weighs 500 N and has a radius of 0.75 m . A block weighing 400 N is supported by an inextensible wire wound round the pulley. Determine the velocity of the block 2 seconds after it is released from rest. Assume the motion is under constant acceleration.
7.a) Define "Work", "Power", and "Energy".
b) A mine cage weighs 12 kN and can carry a maximum load of 20 kN . The average frictional resistance of the side guides is 500 N . What constant cable tension is required to give a loaded cage an upward velocity of $3 \mathrm{~m} / \mathrm{s}$ from rest in a distance of 3 m ?
8.a) Differentiate between simple pendulum and compound pendulum.
b) A solid Aluminium sphere of 50 cm diameter is attached to the lower end of a 10 m long Aluminium rod of 5 cm diameter, the upper end of which is fixed. Find the period of this pendulum. Take $\mathrm{G}=24 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and $\rho=27000 \mathrm{~kg} / \mathrm{m}^{3}$ for Aluminium.

I B.TECH - EXAMINATIONS, DECEMBER - 2010
 ENGINEERING MECHANICS (COMMON TO ME, MCT, MMT, MEP, AE, AME)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Derive an expression for the ratio of belt tensions for a flat belt passing over a pulley when it is just on the point of slipping.
b) Find the maximum power transmitted and initial tension in a flat belt 8 mm thick and 100 mm wide. The belt transmits power between two pulleys running at 31.67 m / s. The angle of lap of smaller pulley is 165° and the coefficient of friction between the belt and pulley is 0.3 . Mass of the belt is 0.9 kg per m length, and the maximum permissible stress in the belt is $2 \mathrm{MN} / \mathrm{m}^{2}$.
[8+8]
2.a) Compare the location of the centroids of an arc of a circle and a sector of a circle subtending the same angle at the centre of the circle.
b) From a circular area of diameter 2d, a smaller circle of diameter d is removed. The centre of the smaller circle is at a distance of $\mathrm{d} / 2$ from that of the larger circle. Find the centroid of the remaining area.
3.a) What should be the length to radius ratio, i.e. $1 / r$ of a solid cylinder such that the moments of inertia about its longitudinal and transverse axes are equal.
b) Determine the moment of inertia of a hollow sphere of radii R_{1} and R_{2}, and determine the radius of gyration of a solid sphere.
4.a) Classify the following motions as translation, rotation, plane motion, or space motion:
(i) An aeroplane banked and taking a steady turn
(ii) A spinning top in un unsteady motion
(iii) A cone sliding on a flat surface
(iv) A compound pendulum oscillating about the fulcrum
(v) A spherical ball rolling down an incline.
(vi) A door being shut by turning about the hinges

Justify your answer with suitable explanation in each case.
b) A pulley weighs 500 N and has a radius of 0.75 m . A block weighing 400 N is supported by an inextensible wire wound round the pulley. Determine the velocity of the block 2 seconds after it is released from rest. Assume the motion is under constant acceleration.
[10+6]
5.a) Define "Work", "Power", and "Energy".
b) A mine cage weighs 12 kN and can carry a maximum load of 20 kN . The average frictional resistance of the side guides is 500 N . What constant cable tension is required to give a loaded cage an upward velocity of $3 \mathrm{~m} / \mathrm{s}$ from rest in a distance of 3 m ?
6.a) Differentiate between simple pendulum and compound pendulum.
b) A solid Aluminium sphere of 50 cm diameter is attached to the lower end of a 10 m long Aluminium rod of 5 cm diameter, the upper end of which is fixed. Find the period of this pendulum. Take $\mathrm{G}=24 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and $\rho=27000 \mathrm{~kg} / \mathrm{m}^{3}$ for Aluminium.
[6+10]
7.a) Explain the following terms:
i) Mass,
ii) Continuum,
iii) Rigid body,
iv) Particle.
b) If three concurrent forces are acting on a body which are in equilibrium, then prove that the resultant of the two forces should be equal and opposite to the third force.
8.a) What is a wedge? Explain how a wedge is used to raise heavy loads.
b) A square threaded screw jack has a pitch of 1 cm and a mean diameter of 7.5 cm . The mean diameter of the bearing surface between the cap and the screw is 9 cm . The coefficient of friction between all surfaces is 0.10 . What force is required at the end of a lever 90 cm long to raise a load of 40 kN ?
[6+10]

I B.TECH - EXAMINATIONS, DECEMBER - 2010 ENGINEERING MECHANICS (COMMON TO ME, MCT, MMT, MEP, AE, AME)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) What should be the length to radius ratio, i.e. l / r of a solid cylinder such that the moments of inertia about its longitudinal and transverse axes are equal.
b) Determine the moment of inertia of a hollow sphere of radii R_{1} and R_{2}, and determine the radius of gyration of a solid sphere.
[8+8]
2.a) Classify the following motions as translation, rotation, plane motion, or space motion:
(i) An aeroplane banked and taking a steady turn
(ii) A spinning top in un unsteady motion
(iii) A cone sliding on a flat surface
(iv) A compound pendulum oscillating about the fulcrum
(v) A spherical ball rolling down an incline.
(vi) A door being shut by turning about the hinges

Justify your answer with suitable explanation in each case.
b) A pulley weighs 500 N and has a radius of 0.75 m . A block weighing 400 N is supported by an inextensible wire wound round the pulley. Determine the velocity of the block 2 seconds after it is released from rest. Assume the motion is under constant acceleration.
[10+6]
3.a) Define "Work", "Power", and "Energy".
b) A mine cage weighs 12 kN and can carry a maximum load of 20 kN . The average frictional resistance of the side guides is 500 N . What constant cable tension is required to give a loaded cage an upward velocity of $3 \mathrm{~m} / \mathrm{s}$ from rest in a distance of 3 m ?
4.a) Differentiate between simple pendulum and compound pendulum.
b) A solid Aluminium sphere of 50 cm diameter is attached to the lower end of a 10 m long Aluminium rod of 5 cm diameter, the upper end of which is fixed. Find the period of this pendulum. Take $\mathrm{G}=24 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and $\rho=27000 \mathrm{~kg} / \mathrm{m}^{3}$ for Aluminium.
[6+10]
5.a) Explain the following terms:
i) Mass,
ii) Continuum,
iii) Rigid body,
iv) Particle.
b) If three concurrent forces are acting on a body which are in equilibrium, then prove that the resultant of the two forces should be equal and opposite to the third force.

Code.No: R05010302

6.a) What is a wedge? Explain how a wedge is used to raise heavy loads.
b) A square threaded screw jack has a pitch of 1 cm and a mean diameter of 7.5 cm . The mean diameter of the bearing surface between the cap and the screw is 9 cm . The coefficient of friction between all surfaces is 0.10 . What force is required at the end of a lever 90 cm long to raise a load of 40 kN ? [6+10]
7.a) Derive an expression for the ratio of belt tensions for a flat belt passing over a pulley when it is just on the point of slipping.
b) Find the maximum power transmitted and initial tension in a flat belt 8 mm thick and 100 mm wide. The belt transmits power between two pulleys running at 31.67 m / s. The angle of lap of smaller pulley is 165° and the coefficient of friction between the belt and pulley is 0.3 . Mass of the belt is 0.9 kg per m length, and the maximum permissible stress in the belt is $2 \mathrm{MN} / \mathrm{m}^{2}$.
8.a) Compare the location of the centroids of an arc of a circle and a sector of a circle subtending the same angle at the centre of the circle.
b) From a circular area of diameter 2d, a smaller circle of diameter d is removed. The centre of the smaller circle is at a distance of $\mathrm{d} / 2$ from that of the larger circle. Find the centroid of the remaining area.

I B.TECH - EXAMINATIONS, DECEMBER - 2010 ENGINEERING MECHANICS (COMMON TO ME, MCT, MMT, MEP, AE, AME)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Define "Work", "Power", and "Energy".
b) A mine cage weighs 12 kN and can carry a maximum load of 20 kN . The average frictional resistance of the side guides is 500 N . What constant cable tension is required to give a loaded cage an upward velocity of $3 \mathrm{~m} / \mathrm{s}$ from rest in a distance of 3 m ?
2.a) Differentiate between simple pendulum and compound pendulum.
b) A solid Aluminium sphere of 50 cm diameter is attached to the lower end of a 10 m long Aluminium rod of 5 cm diameter, the upper end of which is fixed. Find the period of this pendulum. Take $G=24 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and $\rho=27000 \mathrm{~kg} / \mathrm{m}^{3}$ for Aluminium.
[6+10]
3.a) Explain the following terms:
i) Mass,
ii) Continuum,
iii) Rigid body,
iv) Particle.
b) If three concurrent forces are acting on a body which are in equilibrium, then prove that the resultant of the two forces should be equal and opposite to the third force.
4.a) What is a wedge? Explain how a wedge is used to raise heavy loads.
b) A square threaded screw jack has a pitch of 1 cm and a mean diameter of 7.5 cm . The mean diameter of the bearing surface between the cap and the screw is 9 cm . The coefficient of friction between all surfaces is 0.10 . What force is required at the end of a lever 90 cm long to raise a load of 40 kN ?
5.a) Derive an expression for the ratio of belt tensions for a flat belt passing over a pulley when it is just on the point of slipping.
b) Find the maximum power transmitted and initial tension in a flat belt 8 mm thick and 100 mm wide. The belt transmits power between two pulleys running at 31.67 m / s. The angle of lap of smaller pulley is 165° and the coefficient of friction between the belt and pulley is 0.3 . Mass of the belt is 0.9 kg per m length, and the maximum permissible stress in the belt is $2 \mathrm{MN} / \mathrm{m}^{2}$.
[8+8]
6.a) Compare the location of the centroids of an arc of a circle and a sector of a circle subtending the same angle at the centre of the circle.
b) From a circular area of diameter 2d, a smaller circle of diameter d is removed. The centre of the smaller circle is at a distance of $\mathrm{d} / 2$ from that of the larger circle. Find the centroid of the remaining area.
7.a) What should be the length to radius ratio, i.e. l / r of a solid cylinder such that the moments of inertia about its longitudinal and transverse axes are equal.
b) Determine the moment of inertia of a hollow sphere of radii R_{1} and R_{2}, and determine the radius of gyration of a solid sphere.
8.a) Classify the following motions as translation, rotation, plane motion, or space motion:
(i) An aeroplane banked and taking a steady turn
(ii) A spinning top in un unsteady motion
(iii) A cone sliding on a flat surface
(iv) A compound pendulum oscillating about the fulcrum
(v) A spherical ball rolling down an incline.
(vi) A door being shut by turning about the hinges

Justify your answer with suitable explanation in each case.
b) A pulley weighs 500 N and has a radius of 0.75 m . A block weighing 400 N is supported by an inextensible wire wound round the pulley. Determine the velocity of the block 2 seconds after it is released from rest. Assume the motion is under constant acceleration.

